Kalman Filter analysis

  • Statut: Pending
  • Prix: $150
  • Propositions reçues: 1

Résumé du concours

I would like use the Kalman filter (not smoother) to estimate smooth values - in real-time - (for the position (Pt) and "velocity" (Vt, first derivative) of the attached time series.

This time series shows clear signs of mean reversion around zero, meaning that the acceleration (At, second derivative) should have a negative coefficient with Pt.

I would prefer a R-based solution, preferably using the FKF package.

I tried the following transition equation, unsuccessfully.

P(t+1)=(1 1 0.5 ) P(t) + Noise(P)
V(t+1)=(0 1 1 ) V(t) + Noise(V)
A(t+1)=(-Z 0 1) A(t) + Noise(A)

Additionally, I would like noises to be estimated (and not inputted).

As a newbie in Kalman filter, I’ve been struggling with this, but for someone who’s familiar with R and the Kalman filter, it should be an easy task.

Compétences recommandées

Meilleures propositions de ce concours

Afficher plus de propositions

Tableau de clarification publique

  • freelanmohan7
    freelanmohan7
    • il y a 3 ans

    Hi, Expert in Kalman Filtering here. I need few clarifications regarding this project. You have three state variables in your model and the attached file has info about only one state. What does the data represent? acceleration or position? What is Z in those equations. I guess the information you provided is incomplete.

    • il y a 3 ans

Comment commencez des concours

  • Publiez votre concours

    Publiez Votre Concours Rapide et facile

  • Obtenez des tonnes de propositions

    Obtenez des tonnes de propositions De par le monde

  • Décernez la meilleure proposition

    Décernez la meilleure proposition Téléchargez les fichiers - faciles !

Publiez un concours maintenant ou rejoignez-nous maintenant !